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Abstract 
 
A new transient analysis method for a rectangular plate structure comprised of a large number of plate elements was 

developed in order to significantly reduce computational time and memory. This algorithm was derived from the com-
bination of the transfer technique of the transfer mass coefficient method, the modeling technique of the finite element 
method, and the numerical integration technique of Newmark’s method. In this paper, the algorithm for the transient 
analysis of a rectangular plate structure is formulated by the proposed method. In order to verify the computational 
accuracy and efficiency of the proposed method, the results obtained by the proposed method were compared with 
those obtained by the finite element method and the finite element-transfer matrix method. The proposed method, the 
finite element-transfer mass coefficient method, could considerably reduce the computation time without the loss of 
accuracy, in spite of using small computation memory, by using the transfer rules successively.   
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1. Introduction 

The finite element method (FEM) is the most pow-
erful and widely used method in the field of com-
puter-aided engineering. However, it requires long 
computation time and large computation memory for 
accurately solving dynamic problems of structures 
that have a number of degrees-of-freedom [1-11]. To 
overcome the above limitations of the FEM, some 
numerical methods have been developed and used for 
computing the transient responses of rectangular plate 
structures [3, 6, 8]. 

The combined use of the finite element-transfer 
matrix method (FE-TMM) was proposed by Dokain-
ish [1] for the free vibration analysis of plates, and the 

FE-TMM was introduced for analyzing the transient 
response of frame structures and rectangular plate 
structures [3, 5]. The advantages of the FE-TMM are 
a short computation time and an economical compu-
tation memory. However, it was pointed out that the 
recursive multiplications of transfer matrices in the 
FE-TMM produce the propagation of round-off errors. 
To minimize these errors in the FE-TMM, we need to 
use some techniques such as exchanging of the state 
vectors [3]. However, these techniques counteract the 
simplicity, which is the merit of the transfer matrix 
method [12]. Therefore, it is not easy to apply the FE-
TMM to the transient analysis of the rectangular plate 
structures modeled as a number of plate elements. 

A new transient analysis algorithm for a rectangu-
lar plate structure comprised of a number of plate 
elements was developed in order to significantly re-
duce computational time and memory. This algorithm 
was derived from a combination of the transfer tech-
nique of the transfer mass coefficient method [11], the 
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modeling technique of the FEM, and the numerical 
integration technique of Newmark’s method [13]. It is 
termed the finite element-transfer mass coefficient 
method (FE-TMCM). 

In this paper, the transient analysis algorithm for a 
rectangular plate structure is formulated by the FE-
TMCM. The computational trust and speed of the FE-
TMCM are demonstrated by comparing results ob-
tained by the FE-TMCM with those obtained by the 
FEM and the FE-TMM for several rectangular plate 
structures. 

 
2. Formulation 

2.1 Modeling 

As shown in Fig. 1, a rectangular plate structure is 
considered to be an analytical model used to formu-
late the transient response analysis algorithm of plate 
structures. 

The plate structure consists of a rectangular plate, 
elastic springs and viscous dampers that support the 

 

 
 
Fig. 1. Analytical model. 

 

 
 
Fig. 2. Strip divided into rectangular plate elements. 

plate from the base, as well as added masses. The 
rectangular plate is divided into m strips, and each 
strip is subdivided into n-1 rectangular plate elements, 
as shown in Fig. 2. The sections dividing or bordering 
the strips are called nodal lines, which are designated 
as nodal line 1, nodal line 2, …, and nodal line m+1 
successively from the left-hand edge to the right-hand 
edge of the plate. 

Each nodal line has n nodes, and a node has 3 de-
grees-of-freedom for analyzing the bending vibration 
of a plate. Therefore, each nodal line has 3n degrees-
of-freedom. The displacement vector of the node j 
( { , , } T

j z x y juu φ φ= ) is composed of a displacement 
( zu ) and two angular displacements ( ,x yφ φ ). The 
velocity vector ( / { , , } T

j j z x y jd dt vu u ω ω= = ) con-
sists of a linear velocity ( zv ) and two angular veloci-
ties ( ,x yω ω ). The acceleration vector 
( / { , , } T

j j z x y jd dt au u α α= = ) is composed of a lin-
ear acceleration ( za ) and two angular accelerations 
( ,x yα α ). The force vector of the node j 
( { , , } T

j z x y jF M Mf = ) consists of the forces ( zF ) and 
the moments ( ,x yM M ). Therefore, the displacement 
vector of the nodal line i ( 1 2{ , , , }T T T T

i n iU u u u= ) is 
comprised of the displacement vectors of all nodes in 
the nodal line i. The force vector of the nodal line i 
( 1 2{ , , , }T T T T

i n iF f f f= ) consists of the force vectors 
of all nodes in the nodal line i. 

If there are supporting parts that support some 
nodes of the plate from the base, they are modeled as 
3 springs and 3 viscous dampers per node. The 
springs consist of a linear and two rotational springs 
of which the constants are ˆ

zk , ˆ
xK  and ˆ

yK . The 
viscous dampers are comprised of a linear and two 
rotational viscous dampers of which the constants are 
ˆzc , ˆ

xC  and ˆ
yC . In the present method, the bound-

ary conditions of the left- and right-hand edges of the 
rectangular plate structure are modeled as springs and 
viscous dampers supporting the first and last nodal 
lines from the base. For example, the spring constants 
of nodal line 1 are considered as infinities in the case 
of a fixed condition at the left-hand edge. In the case 
of a free condition at the right-hand edge, the spring 
constants of nodal line m+1 are considered to be zeros. 

If there are external forces acting on some nodes of 
the plate structure, they are modeled as an excitation 
force ( ˆzq ) and two excitation moments ( ˆ ˆ,x yQ Q ) per 
node. When a node of the plate structure has an added 
mass, the added mass is considered to be an addi-
tional mass ( m̂ ) and two rotational inertias 
( ˆ ˆ,x yM M ). 
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The strip i represents the i-th strip of the plate, 
which exists between the nodal line i and the nodal 
line i+1. Each strip has 2n nodes. We can easily ob-
tain the mass matrix iM , the damping matrix iC  
and the stiffness matrix iK  for the strip i by assem-
bling the mass, damping and stiffness matrices of 
various plate elements such as the thin rectangular 
element with four node points, the thin triangular 
element with three node points, and so forth [14]. 

The equation of motion for the strip i at time t is 
represented as 

 
( ) ( )( ) ( )

,
( ) ( )( ) ( )

L LL L
i ii i

i i i R RR R
i ii i

t tt t
t tt t

U FU U
M C K

U FU U

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭
    

   (1) 
 
where ( )i tU  and ( )i tU  are the velocity and accel-
eration vectors of the strip i at time t, respectively. 
Superscripts L and R represent the quantities of the 
left- and right-hand sides of a strip. 

 
2.2 Newmark’s method 

From Newmark’s method [13], the displacement 
and velocity vectors of the nodal line i at time t are 
assumed by using the acceleration vector at the same 
time and the displacement, velocity and acceleration 
vectors before time step ∆t as follows: 

 
2( ) ( ) ( ) ( ),i i it t t t tU U Yβ= ∆ + −∆              (2) 

( ) ( ) ( ),i i it t t t tU U Zγ= ∆ + −∆                 (3) 
 
where 
 

2

( ) ( ) ( )

(0.5 )( ) ( ),
i i i

i

t t t t t t t

t t t

Y U U

Uβ
−∆ = −∆ +∆ −∆ +

− ∆ −∆
     (4) 

) ( ) (1 ) ( ),i i i(t t t t t t tZ U Uγ−∆ = −∆ + − ∆ −∆   (5) 
 
and the parameters β and γ are chosen by considering 
the accuracy and stability of numerical integration. 

 
2.3 Definition of mass coefficient matrix and force 

corrective vector 

To easily describe the concept of the present me-
thod, a nodal line is divided analytically into the left- 
and right-hand sides of the nodal line. We denote 
quantities of the left-hand side of the nodal line with 
the head mark, −, on the symbols corresponding to 

the quantities. The quantities of the right-hand side of 
the nodal line are denoted without the head mark on 
the same symbols. Symbols with subscript i represent 
quantities corresponding to the nodal line i or the strip 
i. 

We define the relationship between the force vector 
and the acceleration vector at the left- and right-hand 
sides of the nodal line i as follows: 

 
(t) (t) (t),i i i iF J U E= +                      (6) 

(t) (t) (t),i i i iF J U E= +                      (7) 
 
where the matrices iJ  and iJ  are termed the mass 
coefficient matrices at the left- and right-hand sides of 
the nodal line i, and the vectors ( )i tE  and ( )i tE  
are termed the force corrective vectors at the left- and 
right-hand sides of the nodal line i. 

 
2.4 Transfer of mass coefficient matrix and force 

corrective vector 

If there are added masses, springs, viscous dampers 
and external forces at the nodal line i, from the bal-
ancing of force vectors and the continuous condition 
of displacement vectors at the nodal line i, the follow-
ing equations can be obtained. 

 
ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),i i i i i i i i it t t t t tM U Q F F C U K U= + − − −  

        (8) 
( ) ( ), ( ) ( ), ( ) ( ),i i i i i it t t t t tU U U U U U= = =   (9) 

 
where 
 

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆDiag ( , , , , , , , ) ,
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆDiag ( , , , , , , , ) ,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆDiag ( , , , , , , , ) ,
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ{ , , , , , , , } ,

i x y x y yn i

i z x y z x y yn i

i z x y z x y yn i

T
i z x y z x y yn i

m M M m M M M

c C C c C C C

k K K k K K K

q Q Q q Q Q Q

M

C

K

Q

=

=

=

=

  

 (10) 
 
in which Diag(…) refers to a diagonal matrix, and the 
matrices ˆ

iM , ˆ
iK  and ˆ

iC  denote the point mass, 
stiffness and damping matrices, respectively. 

Consider the transfer of the mass coefficient matrix 
and the force corrective vector from the left-hand side 
of the nodal line i to the right-hand side of the nodal 
line i. We can derive the matrix iJ  and the vector 

( )i tE  from Eqs. (2) and (3), and from Eqs. (6) - (9) 
as follows: 
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2ˆˆ ˆ( ) ,i i i i it tJ J M C Kγ β= + + ∆ + ∆           (11) 
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),i i i i i i it t t t t t tE E Q C Z K Y= − + −∆ + −∆   

     (12) 
 
where Eqs. (11) and (12) are the point transfer rules 
of the mass coefficient matrix and the force corrective 
vector, respectively. 

Because the left-hand side of the strip i becomes 
the right-hand side of the nodal line i, and the right-
hand side of the strip i becomes the left-hand side of 
the nodal line i+1, the following equations are ob-
tained by substituting Eqs. (2) and (3) for Eq. (1). 

 

1( ) ( ) ( ) ( ),i i i i i it t t tA U B U W F++ + =−          (13) 

1 1 1( ) ( ) ( ) ( ),i i i i i it t t tC U D U W F+ + ++ + =         (14) 
 
where 
 

2

1 1 1

1 1

( ) ,

( ) ( ) ( )
,

( ) ( ) ( )

( ) ( )( )
,

( ) ( )( )

i i
i i i

i i

i i i
i i

i i i

L
i ii

R
i ii

t t

t t t t t
t t t t t

t tt
t tt

A B
M C K

C D

W Z Y
C K

W Z Y

U FU
U FU

γ β

+ + +

+ +

⎡ ⎤
⎢ ⎥ = + ∆ + ∆⎢ ⎥⎣ ⎦
⎧ ⎫ ⎧ ⎫ ⎧ ⎫−∆ −∆⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪ ⎪−∆ −∆⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

⎧ ⎫⎧ ⎫ ⎧⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬ ⎨⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

( )
.

( )

L
i

R
i

t
t

F
F

⎧ ⎫⎫ ⎪ ⎪−⎪ ⎪⎪ ⎪ ⎪ ⎪=⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
        (15) 

 
Consider the transfer of the mass coefficient matrix 

and the force corrective vector from the right-hand 
side of the nodal line i to the left-hand side of the 
nodal line i+1, across the strip i. We can derive the 
matrix 1iJ +  and the vector 1( )i tE +  from the equa-
tion substituted with i=i+1 in Eq. (6), and from Eqs. 
(7), (13) and (14) as follows: 

 
1 ,i i i iJ C V D+ = +                          (16) 

1 1( ) ( ) ( ),i i i it t tE C H W+ += +                  (17) 
 

where 
 

{ }

1, ( ) ,
( ) ( ) ( ) ,

i i i i i i

i i i it t t
V G B G J A
H G W E

−= =− +
= +

            (18) 

 
and Eqs. (16) and (17) are the field transfer rules of 
the mass coefficient matrix and the force corrective 
vector, respectively. 

 

2.5 Transient response 

Because the boundary condition at the left-hand 
edge is modeled as the point mass, stiffness and 
damping matrices at nodal line 1 in the present me-
thod, the force vector 1( )tF  at the left-hand side of 
nodal line 1 can be considered a null vector. We can 
determine the matrix 1J  and the vector 1( )tE  from 

1( )tF 0=  and Eqs. (2), (3), (7) and (8) into which 
i=1 has been substituted as follows: 

 
2

1 1 1 1
ˆˆ ˆ( ) ,t tJ M C Kγ β= + ∆ + ∆               (19) 

1 1 1 1 1 1
ˆ ˆˆ( ) ( ) ( ) ( ).t t t t t tE C Z K Y Q= −∆ + −∆ −   (20) 

 
We can finally derive the matrix 1mJ +  and the 

vector 1( )m tE +  when successively applying the 
above transfer rules, using Eqs. (11), (12), (16) and 
(17), after first obtaining the matrix 1J  and the vec-
tor 1( )tE  from Eqs. (19) and (20). 

Since the boundary condition at the right-hand edge 
of the plate structure is modeled as the point mass, 
stiffness and damping matrices at nodal line m+1, the 
right-hand side of nodal line m+1 can be considered 
analytically as being free, that is, 1( )m tF 0+ = . From 

1( )m tF 0+ =  and Eq. (7), into which i=m+1 has been 
substituted, the acceleration vector of nodal line m+1 
can be obtained as follows: 

 
1

1 1 1( ) ( ).m m mt tU J E−
+ + +=−                   (21) 

 
From Eq. (7), (9), (13) and (18), the relationship of 

the acceleration vectors, across the strip i, is given as 
 

1( ) ( ) ( ).i i i it t tU V U H+= +                    (22) 
 
After the acceleration vector of nodal line m+1 is 

calculated from Eq. (21), the acceleration vectors at 
the other nodal lines can be obtained recursively by 
using Eq. (22). 

 
2.6 Initial acceleration 

The point transfer rules of the mass coefficient ma-
trix and the force corrective vector at the initial time 
can be obtained from Eqs. (6) - (9) at t=0 as follows: 

 
ˆ ,i i iJ J M= +                              (23) 

ˆ ˆ ˆ(0) (0) (0) (0) (0).i i i i i i iE E Q C U K U= − + +   (24) 
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From Eqs. (1) and (15) at t=0, the following equa-
tion can be obtained. 

 

1(0) (0) (0) (0),i i i i i iA U B U W F++ + =−        (25) 

1 1 1(0) (0) (0) (0),i i i i i iC U D U W F+ + ++ + =       (26) 
 
where 

 

1 11

,

(0)(0) (0)
.

(0) (0)(0)

i i
i

i i

ii i
i i

i ii

A B
M

C D

UW U
C K

W UU+ ++

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎣ ⎦

⎧ ⎫⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭

 (27) 

 
The field transfer rules of the mass coefficient ma-

trix and the force corrective vector at the initial time 
can be obtained from the equation substituted with 
i=i+1 in Eq. (6) at t=0, and from Eqs. (7), (25) and 
(26) at t=0 as follows: 

 

1 ,i i i iJ C V D+ = +                          (28) 

1 1(0) (0) (0),i i i iE C H W+ += +                (29) 
 
where 
 

{ }

1, ( ) ,

(0) (0) (0) .
i i i i i i

i i i i

V G B G J A

H G W E

−= =− +

= +
            (30) 

 
From Eqs. (7) and (8) into which i=1 has been sub-

stituted at t=0, we can determine the matrix 1J  and 
the vector 1(0)E  as follows: 

 

1 1
ˆ ,J M=                                (31) 

1 1 1 1 1 1
ˆ ˆˆ(0) (0) (0) (0).E C U K U Q= + −           (32) 

 
After determining the matrix 1J  from Eq. (31), 

we can successively apply Eqs. (23) and (28) for plate 
structures. We can then obtain the matrix 1mJ + . In 
the same manner, after obtaining the vector 1(0)E  
from Eq. (32), we can successively apply Eqs. (24) 
and (29). We can then obtain vector 1(0)mE + . 

From Eqs. (7), (9), (18) and (25) at t=0, the rela-
tionship of the acceleration vectors between the left- 
and right-hand sides of the strip i is given as 

 

1(0) (0) (0).i i i iU V U H+= +                   (33) 

The initial acceleration vector of nodal line m+1 
can be obtained from Eq. (21) at t=0. The initial ac-
celeration vectors at the other nodal lines can be ob-
tained recursively by using Eq. (33). 

 
3. Verification and discussion 

To verify the computational accuracy and effi-
ciency of the finite element-transfer mass coefficient 
method (FE-TMCM), the authors made three com-
puter programs based on the finite element method 
(FEM), the finite element-transfer matrix method 
(FE-TMM) and the FE-TMCM for calculating the 
transient responses of rectangular plate structures on a 
personal computer. In the numerical calculation, the 
FEM refers to the direct integration method [15], and 
the FE-TMM denotes the standard FE-TMM that 
does not have special techniques to partly avoid 
round-off errors [3]. 

Several rectangular plate structures were chosen as 
numerical models. The thin rectangular element with 
four node points [14] was used in the computer pro-
grams. The dynamic responses and computation 
times obtained by the FE-TMCM were compared 
with those obtained by the FEM and the FE-TMM 
under the same conditions. 

 
3.1 Example 1 

The first numerical model is a cantilever square 
plate structure with a viscous damper at the apex of 
the square plate, as shown in Fig. 3. The damping 
coefficient of the viscous damper ( ˆzc ) is 50 Ns/m. 

The plate structure is subjected to a triangular im-
pulsive load expressed by: ˆzq (t)=10 (1-t/0.05) N, t < 
0.05 sec, as shown in Fig. 3. The physical and geo-
metrical properties of the plate are as follows: 1 m 
length, 1 m width, 0.005 m thickness, 7850 kg/m3 
mass density, 206 GPa elastic modulus and 0.3 Pois-
son’s ratio. The structural damping of the plate is 
neglected. Parameters β and γ of Newmark’s method 
are 0.25 and 0.5, respectively. 

When the time step ∆t is 0.0005 s and the plate is 
divided into 2×2, 4×4, 6×6, 8×8 and 10×10 mesh 
patterns, the transient responses of the plate structure 
were computed by the above three methods. In the 
case of the 2×2 and 4×4 mesh patterns, the transient 
responses of the plate structure obtained by the FE-
TMM agreed well with those obtained by the FEM. 
In the case of the 6×6, 8×8 and 10×10 mesh patterns, 
the FE-TMM produced numerically unstable results  
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Fig. 3. Cantilever square plate structure. 

 

 
 
Fig. 4. Transient response of cantilever square plate structure 
(10×10 mesh pattern, ∆t = 0.0005 s). 
 
that were meaningless. However, under each mesh 
pattern, the transient responses obtained by the FE-
TMCM fully agreed with those obtained by the FEM. 
Fig. 4 shows the dynamic responses of the excitation 
point of the structure obtained by the FEM and the 
FE-TMCM, when the plate is divided into the 10×10 
mesh pattern. To distinctly compare the response 
results of both methods in Fig. 4, the result of the 
FEM is represented by the solid line, and that of the 
FE-TMCM is expressed as only 51 symbols, because 
the number of time points of the response is very 
large and both results coincide with each other. The 
results of the FE-TMCM in Fig. 5, Fig. 7 and Fig. 8 
are expressed as only 51 symbols, for the same reason 
as Fig. 4. 

Table 1 shows computation times by the three me-
thods according to the mesh pattern. It can be seen 
from Table 1 that while the FE-TMCM is not particu-
larly useful for plate structures that are modeled as a 
very small number of plate elements, it is signifi-
cantly useful for plate structures that are modeled as a 
large number of plate elements in terms of computa-
tion time. 

Table 1. Comparison of computation times for cantilever square 
plate structure (unit: s). 
 

Mesh FEM FE-TMCM FE-TMM 

2×2 0.427 0.578 0.953 

4×4 2.172 1.469 2.646 

6×6 8.151 3.052 ----- 

8×8 28.057 5.719 ----- 

10×10 77.927 9.839 ----- 

 

 
 
Fig. 5. Transient response of cantilever square plate structure 
(4×4 mesh pattern, ∆t = 0.0001 s). 

 
When the plate is divided into the 4×4 mesh pattern 

and the time steps are 0.0010 s, 0.0005 s, 0.0003 s 
and 0.0001 s, the transient responses of the structure 
were computed by the three methods. In the case of 
the time steps of 0.0010 s and 0.0005 s, the transient 
responses of the plate structure obtained by the FE-
TMM agreed well with those obtained by the FEM. 
In the case of the time steps of 0.0003 s and 0.0001 s, 
the FE-TMM produced unstable and meaningless 
results. However, under every time step, the transient 
responses of the plate structure obtained by the FE-
TMCM coincided completely with those obtained by 
the FEM. Therefore, we confirmed that the FE-
TMCM is superior to the FE-TMM in terms of com-
putational accuracy. Fig. 5 shows the transient re-
sponse at the excitation point of the plate structure for 
the FEM and the FE-TMCM, when the time step is 
0.0001 s. In Fig. 5, we confirmed that the results of 
both methods also coincide. 

When the plate is modeled as the 10×10 mesh pat-
tern, the total degrees-of-freedom of the plate is 363. 
In the FEM, the sizes of the system mass, damping 
and stiffness matrices are then 363 by 363. However, 
the size of the mass coefficient matrix in the FE-
TMCM is only 33 by 33. Therefore, the FE-TMCM is 
superior to the FEM in terms of the management of 
computation memory, because the FE-TMCM uses 
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the small matrix size through the transfer rules 

 
3.2 Example 2 

The second numerical model is a rectangular plate 
structure supported with springs and viscous dampers, 
as shown in Fig. 6. The spring constants of the 
springs ( ,

ˆ
z ck ) and the damping coefficient of the vis-

cous dampers ( ,ˆz cc ) at the four apexes of the rectan-
gular plate are 1.0e4 N/m and 100 Ns/m, respectively. 
The plate structure is subjected to a step load, 
ˆzq (t)=10 N, at the center. The physical and geomet-

rical properties of the plate are as follows: 1 m length, 
0.5 m width, 0.005 m thickness, 2700 kg/m3 mass 
density, 70 GPa elastic modulus and 0.33 Poisson’s 
ratio. The structural damping of the plate is neglected. 
Parameters β and γ of Newmark’s method are 0.25 
and 0.5, respectively. 

When the time step is 0.0005 s, the spring constants 
of the intermediate springs ( ,

ˆ
z mk ) are 1.0e4 N/m, and 

the plate is divided into 4×2, 8×4, 12×6, 16×8 and 
20×10 mesh patterns, the transient responses of the 
structure were computed by the above three methods. 
In the case of the 4×2 mesh pattern, the transient re-
sponses of the structure obtained by the FE-TMM 
agreed well with those obtained by the FEM. In the 
case of the 8×4, 12×6, 16×8 and 20×10 mesh patterns, 
the FE-TMM produced numerically unstable and 
meaningless results. 

However, under every mesh pattern, the transient 
responses of the plate structure obtained by the FE-
TMCM fully agreed with those obtained by the FEM. 
Fig. 7 shows the transient responses at the center of 
the plate structure obtained by the FEM and the FE-
TMCM when the plate is divided into the 20×10 
mesh pattern. In Fig. 7, we confirmed that the results 
of the FEM and the FE-TMCM also coincide. 

Table 2 shows the computation time according to 
the mesh pattern for the three methods. It can be seen   

 

 
 
Fig. 6. Rectangular plate structure supported by springs and 
viscous dampers. 

that the FE-TMCM is superior to the FEM in terms of 
computation time in the case of computing transient 
responses of plate structures modeled as a large num-
ber of plate elements. 

When the plate is divided into the 4×2 mesh pattern, 
the time step is 0.0005 s and the spring constants of 
the intermediate springs ( ,

ˆ
z mk ) are 1.0e4 N/m, 1.0e7 

N/m and 1.0e10 N/m, the transient responses of the 
structure were computed by the three methods. In the 
case of the spring constants of 1.0e4 N/m and 1.0e7 
N/m, the transient responses of the plate structure 
obtained by the FE-TMM agreed well with those 
obtained by the FEM. In the case of the spring con-
stant of 1.0e10 N/m, the FE-TMM produced unstable 
and meaningless results. However, under each spring 
constant, the transient responses obtained by the FE-
TMCM fully agreed with those obtained by the FEM. 
Fig. 8 shows the transient response at the center of the 
plate structure obtained by the FEM and the FE-
TMCM when the spring constants of the intermediate 
springs are 1.0e10 N/m. In Fig. 8, we confirmed that 
the results of both methods also coincide. 

When the plate is modeled as the 20×10 mesh pat-
tern, the total degrees-of-freedom of the numerical 
model is 693. In the FEM, the sizes of the system 
mass, damping and stiffness matrices are then 693 by  

 
Table 2. Comparison of computation times for rectangular plate 
supported by springs and viscous dampers (unit: s). 
 

Mesh FEM FE-TMCM FE-TMM 

4×2 0.859 0.969 1.625 

8×4 6.969 2.719 ----- 

12×6 37.440 5.844 ----- 

16×8 118.917 11.239 ----- 

20×10 292.661 19.750 ----- 
 

 
 
Fig. 7. Transient response of rectangular plate structure sup-
ported by springs and viscous dampers (20×10 mesh pattern, 
∆t = 0.0005 s, ,

ˆ
z mk = 1.0e4 N/m). 
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Fig. 8. Transient response of rectangular plate structure sup-
ported by springs and viscous dampers (4×4 mesh pattern, ∆t = 
0.0005 s, ,

ˆ
z mk = 1.0e10 N/m). 

 
693. However, the size of the mass coefficient matrix 
in the FE-TMCM is only 33 by 33. Therefore, the FE-
TMCM is superior to the FEM in terms of the man-
agement of computation memory, particularly, for the 
case where the length of the plate is longer than the 
width. 

The FEM requires a large computation memory 
and a long computation time when the transient re-
sponse of the rectangular plate structure with very 
large degrees-of-freedom is analyzed. However, the 
FE-TMCM can significantly reduce the computation 
time without the loss of accuracy, in spite of using a 
small computation memory, by using the transfer 
rules successively 

 
4. Conclusions 

A new transient response analysis algorithm, the fi-
nite element-transfer mass coefficient method, was 
developed in order to significantly reduce the compu-
tational time and memory in the transient analysis of a 
rectangular plate structure comprised of a large num-
ber of plate elements. The concept of the finite ele-
ment-transfer mass coefficient method was based on 
the combination of the transfer technique of the trans-
fer mass coefficient method, the modeling technique 
of the finite element method, and the numerical inte-
gration technique of Newmark’s method. 

Through the results of the transient analysis for sev-
eral numerical models, we can verify that the FEM 
requires long computation time and large computa-
tion memory when a rectangular plate structure that 
consists of a large number of plate elements is ana-
lyzed. Furthermore, the FE-TMM has many draw-
backs in the transient analysis when the time step of 

numerical integration is short and the plate structure is 
comprised of many plate elements or supported by 
rigid springs at the intermediate of the plate structure. 
However, the FE-TMCM can considerably reduce the 
computation time without the loss of accuracy, in 
spite of using small computation memory, by using 
the transfer rules successively. 

In this paper, the developed computational algo-
rithm is limited to two-dimensional structures such as 
lattice and plate structures. Therefore, the authors will 
study in the future to develop an efficient computa-
tion algorithm for the transient analysis of complex 
three-dimensional structures. 
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